
init4boot

Requirements & Design

Version 11

Status: Beta

July 2, 2008

http://sourceforge.net/projects/init4boot/

http://www.flonatel.org/gnu4u

init4boot Requirements & Design

© 2008 by florath nanosystems & telecommunications GmbH & Co. KG - www.flonatel.org
All rights reserved.

Redistribution and use in physical and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions must retain the above copyright notice, this list of conditions and the following disclaimer.
• Neither the name of the florath nanosystems & telecommunications GmbH & Co. KG nor the names of its

contributors may be used to endorse or promote products derived from this software without specific prior
written permission.

THIS DOCUMENTATION IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Linux® is a registered trademark from Linus Torvalds.

page 2/24

http://www.flonatel.org/

init4boot Requirements & Design

Table of Contents
1 Note About Status..7
2 Features...7
3 Name..7
4 Alternatives..7
5 Introduction..8
6 Definitions..8

6.1 Wording...8
6.2 Boot type...8
6.3 Boot variant...8

7 Requirements...9
7.1 General..9
7.2 initramfs..9
7.3 init ...9

7.3.1 Phases and Stages..10
7.3.1.1 Stages..11
7.3.1.2 Phases..12

7.3.2 Modular...14
7.3.3 Dependencies...14
7.3.4 Command Line Parameters...15
7.3.5 Boot types ..16

7.3.5.1 Generic...16
7.3.5.2 local..16
7.3.5.3 nfs..17
7.3.5.4 iscsi..17

7.3.6 Boot variants...17
7.3.6.1 udev ..17
7.3.6.2 multipath..17
7.3.6.3 LVM..18
7.3.6.4 network ...18

7.3.6.4.1DHCP..18
7.3.6.4.2static...18

7.3.6.5 tftp ..18
8 Design decisions...20

8.1 Python..20
9 Implementation Details..20

9.1 Shared Library handling...20
10 Testing..20

10.1 Tested systems..21
11 Releases / Versions / History..23

11.1 Releases..23
11.1.1 0.0.1 [2008-03-31]..23
11.1.2 0.0.2 [2008-04-04]..23
11.1.3 0.1 [2008-04-18]...23
11.1.4 0.2 [2008-05-03]...23

page 3/24

init4boot Requirements & Design

11.1.5 0.3 [2008-07-02]...23
11.1.6 Short term aims..23
11.1.7 Aims to get to stable state..23
11.1.8 Long term aims...24

12 Open Points / ToDo...24
13 Bibliography...24

page 4/24

init4boot Requirements & Design

Requirements
Requirement #1: Create bootable initramfs..9
Requirement #2: Debian packages on stable...9
Requirement #3: General..9
Requirement #4: init as a shell script...9
Requirement #5: Efficient...10
Requirement #6: Phases...10
Requirement #7: Stages...10
Requirement #8: Stages are optional...11
Requirement #9: Stage prepare...11
Requirement #10: Stage pre_output...11
Requirement #11: Stage pre_output only for Generic Module..........................11
Requirement #12: Stage output...11
Requirement #13: Stage post_output...11
Requirement #14: Stage post_output only for Generic Module........................12
Requirement #15: Stage cleanup...12
Requirement #16: Phase Intro..12
Requirement #17: Phase FunctionDefinition...12
Requirement #18: Phase CommandLineParsing...12
Requirement #19: Phase CommandLineVerbose..13
Requirement #20: Phase InitialSystemSetup..13
Requirement #21: Phase CommandLineEvaluation..13
Requirement #22: Phase HandleInitialModuleSetup...13
Requirement #23: Phase SetupLowLevelTransport..13
Requirement #24: Phase SetupHighLevelTransport...13
Requirement #25: Phase SetupDiskDevices...13
Requirement #26: Phase MountRoot..14
Requirement #27: Phase PrepareRootDir...14
Requirement #28: Phase CheckForInit..14
Requirement #29: Phase RunInit..14
Requirement #30: Program must be modular...14
Requirement #31: Dependencies..15
Requirement #32: Specification of Dependencies..15
Requirement #33: Granularity of Dependencies...15
Requirement #34: Exclusion of existing kernel parameters.............................15
Requirement #35: rfs: Root File System...15
Requirement #36: rfs: Syntax...15
Requirement #37: rfs: Boot Type..16
Requirement #38: Additional Parameters...16
Requirement #39: Boot Variant..16
Requirement #40: Host ID..16
Requirement #41: local: Generic..16
Requirement #42: local: path...16
Requirement #43: iscsi: Generic...17
Requirement #44: iscsi: Parameter localiqn...17

page 5/24

init4boot Requirements & Design

Requirement #45: iscsi: Parameter portals...17
Requirement #46: iscsi: path..17
Requirement #47: udev: Generic..17
Requirement #48: multipath: Generic..18
Requirement #49: network: Generic...18
Requirement #50: network: Parameter nw...18
Requirement #51: network: Syntax of nw Parameter.......................................18
Requirement #52: network: DHCP..18
Requirement #53: tftp: Dependency to Network Boot Variant.........................19
Requirement #54: tftp: Command Line Parameters...19
Requirement #55: tftp: File Name...19
Requirement #56: tftp: File Format...19
Requirement #57: tftp: File Extraction..19
Requirement #58: tftp: Execution of Shell Script..19

page 6/24

init4boot Requirements & Design

1 Note About Status
This document has beta status. That means, that mostly everything may
change.

2 Features
init4boot brings mostly everything that similar packages – like initramfs-tools
or yaird – provide, but it adds the following functionality:

● it's extensible: to add functionality, only a small python module is
needed.

● boot with init script generated by init4boot is faster, because
○ everything that can be handled is handled at script creation time –

and not during boot time.

○ it drops compatibility to existing kernel parameters, e.g. an ip=dhcp in
the initramfs-tools environment does the whole network device
initialization twice: one time during kernel initialization, one time
during initramfs network initialization.

● it's portable and the resulting initramfs can be used for mostly all
systems.

● there is no data collected and used from the build-host system.

● all configuration is done with command line parameters and the dhcp
rootpath parameter.

● iSCSI boot is supported.

● multipath is supported – also during boot time.

● boot as a Xen guest system is supported.

3 Name
The package is named init4boot, because it creates a init environment during
the initial boot from initramfs.

4 Alternatives
There are a couple of other tools and packages, that do similar things:

● initramfs-tools from the mainline Debian distribution [Debian initramfs-
tools].

● yarid from the mainline Debian distribution [Debian yarid].

● RedHat supports iSCSI boot starting with Release 5.1. To configure this,
the initramfs must be extraced by hand, the 'configuration' must be

page 7/24

init4boot Requirements & Design

changed, i.e. the init script must be edited. Afterwards the initramfs
must be recreated by hand. RedHat uses iscsistart and does not support
multipath or multiple targets. [RedHat iSCSI Boot]

5 Introduction
Nowadays mostly all Linux® distributions use some kind of initial ram disk to
set up the system. The Linux® kernel itself has some basic command line
handling, e.g. for setting up some network and using NFS as root file system.
But when it comes to more complicated things, like using LVM, md devices,
multipath, udev and so on, it is more convenient to use a mini system
environment to set up everything. During this phase programs like busybox or
ipconfig are typically used.

The main aim for this project is, to get iSCSI boot running. This is not
integrated in the current initramfs creation tools – and it looks, that it is
complicated to extend an existing tool set to get the needed functionality. Also
it looks, that the current initramfs-tools maintainers are not very interested in
integrating iSCSI in the main-line tool set, because there was no response at all
to a post in Feb 2008 [iSCSI Boot post]. So it was decided to start a new
project to get things fixed.

6 Definitions

6.1 Wording

The key words must, must not, required, shall, shall not, should, should
not, recommended, may, and optional in this document are to be
interpreted as described in [RFC 2119].

6.2 Boot type

The boot type specifies the main way to get the root device. This is typically
one of:

● local for local disks

● iscsi for root devices using the iSCSI protocol

● nfs for NFS mounted root devices

Note that this list might be extended.

Status Note: not only boot types might be supported during initial phase of the
project.

6.3 Boot variant

The boot variant defines some minor aspect of the boot. Currently available
boot variants are:

page 8/24

init4boot Requirements & Design

● network

● udev

● multipath

A boot variant itself is an aspect of the boot type.

Example: iSCSI boot type can be done with or without multipath boot variant.

Note that some boot variants might depend on others.

Example: iSCSI boot type (automatically) depends on boot variant network.

7 Requirements

7.1 General

Requirement #1: Requirement #1: Create bootable initramfsCreate bootable initramfs

init4boot must provide a command line tool for creating a bootable
initramfs.

Requirement #2: Requirement #2: Debian packages on stableDebian packages on stable

When providing Debian packages, these must be build on the stable
distribution.

Note: This minimizes the install dependencies.

7.2 initramfs

This chapter summaries the requirements for the initramfs that is created with
the command line tool.

Requirement #3: Requirement #3: GeneralGeneral

The initramfs must be of general use for all possible setups that are
supported by the kernel and operating system.

Note: This might be hard to test. One thing that follows, is that (mostly) all
modules from the system are put into the initramfs.

7.3 init

Requirement #4: Requirement #4: init as a shell scriptinit as a shell script

The init script(s) must be a shell script executed by the /bin/sh (which is
typically linked to busybox).

Note: That means, that (only) the busybox functionality must be used in the
scripts – and not maybe some advances bash functionality.

page 9/24

init4boot Requirements & Design

Requirement #5: Requirement #5: EfficientEfficient

The created init script(s) must be as efficient as it makes sense.

Note: This is not a real-fact hard requirement, this is just the remark, that
everything that can be done during initramfs / init script creation must be done
then, e.g. handling dependencies of the different modules.

7.3.1 Phases and Stages

This sections contains the list of all phases that are used during the boot
process. Each module can be called at each phase and can adapt the script for
it's needs. Note that the generic real actions described here are done in the
Generic module.

Requirement #6: Requirement #6: PhasesPhases

The following phases must be supported during boot:

• Intro

• FunctionDefinition

• CommandLineParsing

• CommandLineVerbose

• InitialSystemSetup

• CommandLineEvaluation

• HandleInitialModuleSetup

• SetupLowLevelTransport

• SetupHighLevelTransport

• SetupDiskDevices

• MountRoot

• PrepareRootDir

• CheckForInit

• RunInit

Requirement #7: Requirement #7: StagesStages

Each phase must consists of the following stages:

• prepare

• pre_output

• output

page 10/24

init4boot Requirements & Design

• post_output

• cleanup

Note: Each of these stages create some special things in the init script. The
stages are described first, because the phase definitions need the knowledge
of the stages at some points.

7.3.1.1 Stages

Requirement #8: Requirement #8: Stages are optionalStages are optional

All stages of a phase must be optional.

Note: There is no need, that every phase and every module must implement all
stages.

Requirement #9: Requirement #9: Stage prepareStage prepare

During the prepare stage everything, that is special for this phase must be
set up and / or initialized.

Note: Typical things done during these stages are setting up and initializing
variables.

Requirement #10: Requirement #10: Stage pre_outputStage pre_output

During the pre_output stage, the loop start constructs must be set up.

Requirement #11: Requirement #11: Stage pre_output only for Generic ModuleStage pre_output only for Generic Module

Modules apart from the Generic module should not use the pre_output
stage.

Note: Because here normally things like for x in `cat /proc/cmdline`; do
are written out, and there should normally not the need, that other modules do
such generic things.

Requirement #12: Requirement #12: Stage outputStage output

During the output stage, all the real work statements must be written to the
init script.

Note: This is the real working phase.

Requirement #13: Requirement #13: Stage post_outputStage post_output

During the post_output stage, the loop end statement must be written.

page 11/24

init4boot Requirements & Design

Note: Typically something like done is written here.

Requirement #14: Requirement #14: Stage post_output only for Generic ModuleStage post_output only for Generic Module

Modules apart from the Generic module should not use the post_output
stage.

Note: Because this closes what was opened during the pre_output stage, there
will be some problems, if many different modules use some loop constructs.

Requirement #15: Requirement #15: Stage cleanupStage cleanup

During the cleanup stage, all that was set and is not needed any more must
be unset or deleted.

Note: This stage typically holds things like unset var or rm /tmp/somefile.

7.3.1.2 Phases

Requirement #16: Requirement #16: Phase IntroPhase Intro

During the Intro phase, the following things must be handled in the init
script:

• Writing the header #!/bin/sh to the first line

• Add a comment that the script is automatically generated and should not
be changed.

• Add the time of creation, name and version of the creation tool.

Requirement #17: Requirement #17: Phase FunctionDefinitionPhase FunctionDefinition

During this phase, all needed and used functions must be written to the init
script.

Requirement #18: Requirement #18: Phase CommandLineParsingPhase CommandLineParsing

During this phase, the command line parsing must be written to the init
script.

Note: Parsing here means only parsing. The only thing that can and should be
done, is setting some variables. During the pre_output stage, the following is
emitted from the Generic module:

for x in $(cat /proc/cmdline); do

 case ${x} in

This makes it possible that the output stage of other modules can handle

page 12/24

init4boot Requirements & Design

special command line parameters.

The post_output stage closes the case with a default rule, that prints out that
the given parameter is not supported. It also closes the for loop.

Requirement #19: Requirement #19: Phase CommandLineVerbosePhase CommandLineVerbose

During this phase debug and verbose parameters must be evaluated and
corresponding things must be set up.

Note: This is generally only implemented in the Generic module, which handles
the verbose and debug parameters.

Requirement #20: Requirement #20: Phase InitialSystemSetupPhase InitialSystemSetup

During this phase the needed system environment must be set up, like
creating and setting up /dev, /sys, /proc, /tmp.

Requirement #21: Requirement #21: Phase CommandLineEvaluationPhase CommandLineEvaluation

During this phase the command line parameters must be evaluated.

Note: The evaluation should use the command line parameter evaluation from
the CommandLineParsing phase.

Requirement #22: Requirement #22: Phase HandleInitialModuleSetupPhase HandleInitialModuleSetup

During this phase the module set up must be done.

Note: When a boot type or boot variant needs a special module, the loading
must be done at this point.

Requirement #23: Requirement #23: Phase SetupLowLevelTransportPhase SetupLowLevelTransport

During this phase all the low level transport set up must be done.

Note: Here the low-level set up means the physical devices (like FC device or
network devices).

Requirement #24: Requirement #24: Phase SetupHighLevelTransportPhase SetupHighLevelTransport

During this phase all the high level transport set up must be done.

Note: Here the high-level set up means the logical transport protocol set up,
like logging in a SCSI target.

page 13/24

init4boot Requirements & Design

Requirement #25: Requirement #25: Phase SetupDiskDevicesPhase SetupDiskDevices

During this phase all disk device set up must be done.

Note: This means that at the end of this phase there must be a mountable root
device available.

Requirement #26: Requirement #26: Phase MountRootPhase MountRoot

During this phase the root disk device must be mounted under /root.

Note: This is typically done with the a mount command from the Generic
module.

Requirement #27: Requirement #27: Phase PrepareRootDirPhase PrepareRootDir

During this phase the freshly mounted root directory must be adapted.

Note: Typically some boot types and variants need some special set up of the
root directory.

Requirement #28: Requirement #28: Phase CheckForInitPhase CheckForInit

During this phase the correct init executable must be searched.

Note: Typically this is /(s)bin/init or (when specified) /bin/bash.

Requirement #29: Requirement #29: Phase RunInitPhase RunInit

During this phase the real init must be executed in the new root
environment.

Note: This is normally done only by the Generic module.

Note: Everything that is output in the post_output and cleanup phase is
typically not executed – except, when the new init process cannot be executed
or ends.

7.3.2 Modular

Requirement #30: Requirement #30: Program must be modularProgram must be modular

The program to create the initramfs with must be modular in the way that
additional functionality can be added without changing or breaking any
existing functionality.

Note: This is very important. This means also, that the init4boot is extensible.

page 14/24

init4boot Requirements & Design

7.3.3 Dependencies

Some modules and functionality need other modules and functionality. To get
the order right, each module can depend (for each phase) on other modules.

Requirement #31: Requirement #31: DependenciesDependencies

The program to create the initramfs with, must be handle the given
dependencies.

Requirement #32: Requirement #32: Specification of DependenciesSpecification of Dependencies

Dependencies must be specified as a list of dependent modules.

Requirement #33: Requirement #33: Granularity of DependenciesGranularity of Dependencies

It must be possible to specify a dependency for each phase.

7.3.4 Command Line Parameters

The command line parameters are reached to the init script via /proc/cmdline
from the kernel.

There are some general command line parameters that are handled for mostly
all modules – these are described in this section.

There are also command line parameters, that are specific to boot types or
boot variants. These are described further down in the specific section.

Requirement #34: Requirement #34: Exclusion of existing kernel parametersExclusion of existing kernel parameters

The command line parameters which are interpreted from the kernel must
not be (re-)used.

Note: This mostly gives problems.

Example: When using ip=dhcp, the kernel itself tries some heuristic to get
some network interfaces up and running. But this can take much time. When
using about six Ethernet interfaces, all that cannot (and maybe should not)
initialized every single interface configuration runs into a timeout. Therefore,
for configuration of network, the parameter nw= is chosen.

Requirement #35: Requirement #35: rfs: Root File Systemrfs: Root File System

The boot type must be configured with the parameter rfs.

Requirement #36: Requirement #36: rfs: Syntaxrfs: Syntax

page 15/24

init4boot Requirements & Design

The rfs parameter must follow the syntax:

 rfs=<boot type>:<additional parameters>

Requirement #37: Requirement #37: rfs: Boot Typerfs: Boot Type

The <boot type> must be one of iscsi, local or nfs.

Note: The semantics of this should be clear.

Requirement #38: Requirement #38: Additional ParametersAdditional Parameters

The <additional parameters> must be given as a list of key=value pairs,
separated with a semicolon.

Example: The following is a syntactic correct additional parameters list:

fast=yes;use_fb=no;serverip=10.1.1.3

Requirement #39: Requirement #39: Boot VariantBoot Variant

The boot variants must be specified as a comma separated list with the
parameter bv=.

Note: A full list of boot variants can be found in the next sections.

Example: bv=network,udev

Requirement #40: Requirement #40: Host IDHost ID

It must be possible to specify a unique id with the parameter hostid=.

Note: This id is used in some boot scenarios. When this is used is documented
in the next sections.

7.3.5 Boot types

7.3.5.1 Generic

7.3.5.2 local

There is mostly no difference between booting from a local disk or booting from
special Fiber Channel hardware: The things described in this section, are also
valid for the HBA based Fiber Channel setup.

Requirement #41: Requirement #41: local: Genericlocal: Generic

It must be possible to boot from a local hard disk, connected by (S)ATA,
SCSI, USB or IEEE1934 interface.

page 16/24

init4boot Requirements & Design

Requirement #42: Requirement #42: local: pathlocal: path

The path to the root disk that must be specified with the additional
parameter path= must be used as the root disk.

7.3.5.3 nfs

Note: There is currently no support for NFS based root disk.

7.3.5.4 iscsi

Requirement #43: Requirement #43: iscsi: Genericiscsi: Generic

It must be possible to boot from an iSCSI target.

Requirement #44: Requirement #44: iscsi: Parameter localiqniscsi: Parameter localiqn

The local IQN (i. e. the IQN of the client) must be specified with the
additional parameter localiqn=.

Requirement #45: Requirement #45: iscsi: Parameter portalsiscsi: Parameter portals

All iSCSI target portals must be specified as a comma separated list with
the additional parameter portals=.

Requirement #46: Requirement #46: iscsi: pathiscsi: path

The path to the root disk that must be specified with the additional
parameter path= must be used as the root disk.

Example for the rfs parameter for iSCSI:

rfs=iscsi:localiqn=iqn.2008­02.org.flonatel:00031;portals=192
.168.228.20,192.168.228.21;path=/dev/mapper/iboot­root1

7.3.6 Boot variants

7.3.6.1 udev

Requirement #47: Requirement #47: udev: Genericudev: Generic

When the boot variant udev is specified, the Linux udev system must be
initialized during boot.

page 17/24

init4boot Requirements & Design

7.3.6.2 multipath

Requirement #48: Requirement #48: multipath: Genericmultipath: Generic

When the boot variant multipath is specified, the Linux multipath system
must be initialized during boot.

Note: That of course implies, that the root disk can be accesses with multipath.

7.3.6.3 LVM

LVM is currently not supported.

7.3.6.4 network

Requirement #49: Requirement #49: network: Genericnetwork: Generic

When the boot variant network is specified, the specified network devices
must be initialized during boot.

Requirement #50: Requirement #50: network: Parameter nwnetwork: Parameter nw

The network initialization data must be specified with the nw= parameter.

Requirement #51: Requirement #51: network: Syntax of nw Parameternetwork: Syntax of nw Parameter

The nw= parameter must contain a comma separated list of <nwif>:<init
params>, where <nwif> is the name of the network interface and <init
params> are the parameters to initialize the network interface.

7.3.6.4.1 DHCP

Requirement #52: Requirement #52: network: DHCPnetwork: DHCP

When the <init params> is 'dhcp', then the given network device must be
initialized with the help of DHCP.

Example:

nw=eth3:dhcp,eth5:dhcp

7.3.6.4.2 static

Note: Static IP address assignment is currently not supported.

page 18/24

init4boot Requirements & Design

7.3.6.5 tftp

Under some circumstances, there is the need to have much more configuration
data that the kernel command line allows. Currently (for Xen kernels a la
2.6.18), there is a maximum of 256, for newer kernels there is a maximum of
4096 characters.

To get around this limitation there is the possibility to use the tftp boot variant.
This tries to get some data from an tftp server, unpacks it and tries to execute
a shell script – when provided.

Note that there is one major disadvantage when using tftp: there is no access
control. So mostly everybody can read all the filed that are placed on a tftp
server. In data center environments, some mechanism using encryption and /
or authentication (like sftp) should be used instead.

Requirement #53: Requirement #53: tftp: Dependency to Network Boot Varianttftp: Dependency to Network Boot Variant

When the tftp boot variant is enabled, the network boot variant must be
also enabled.

Note: This dependency is normally checked and handled during the
CommandLineEvaluation phase.

Requirement #54: Requirement #54: tftp: Command Line Parameterstftp: Command Line Parameters

When the tftp boot variant is enabled, the command line parameter tftp=
must hold a comma separated list of IP addresses of the tftp servers.

Requirement #55: Requirement #55: tftp: File Nametftp: File Name

When the tftp boot variant is enabled, the file named <hostid>.tar must
be downloaded from a tftp server. As long as it is not possible to download
the file, all given tftp servers must be tried.

Note: Each tftp server must be tried mostly once.

Requirement #56: Requirement #56: tftp: File Formattftp: File Format

The file of the tftp downloaded file must be a tar archive.

Requirement #57: Requirement #57: tftp: File Extractiontftp: File Extraction

The tftp downloaded file must be extracted in the initramfs root directory.

Note: So it is very easy to store some configuration files in the tar archive, e.g.
something like /etc/multipath.conf or /etc/iscsi/iscsid.conf.

page 19/24

init4boot Requirements & Design

Requirement #58: Requirement #58: tftp: Execution of Shell Scripttftp: Execution of Shell Script

When after the extraction of the tftp downloaded file there exists a file
/tftp.sh and this file is executable, this file must be sourced by the init
script.

Note: This is sourced, so that it is possible to set shell variables.

Example of the command line parameters for tftp server:

tftp=192.168.228.24,192.168.228.25

8 Design decisions

8.1 Python

Python was used to create the initramfs and init script, because it's simple, it's
short, it's fast and it works.

9 Implementation Details

9.1 Shared Library handling

Because there is the need that

● one initramfs should be usable mostly everywhere, and

● it must be possible to created the initramfs on every system,

it is not possible

● execute any program,

● to call ldd on a program,

● to make any assumptions about the modules that must be loaded.

Because of this, a new method was developed to get the dependencies correct.
Instead of using the ldd command (which does nothing more than setting some
ld.so environment variables and running the binary), objdump is used. This has
the advantage, that objdump is able to read mostly all kind of binaries.

Currently all the modules that are available are also copied into the initramfs.

This leads to a somewhat large initramfs – something between 20 and 30
MByte. But: therefore there needs only be one. In a data centre environment
this makes sense: there is no need to fiddle around with creating, unpacking
and repacking the initramfs. For each kernel version (and OS release) there is
only one initramfs. This saves management time and some disk space –
compared with some hundreds of individual initramfs images.

page 20/24

init4boot Requirements & Design

10 Testing
The following types, architectures and variants influence the boot process. To
have a full regression test for all of the systems, about 75.000.0001 different
system setups are needed – for each distribution.

Dependencies:

● Architecture: amd64, arm, armeb, alpha, hppa, i386, ia64, m68k, mips,
mipsel, powerpc, s390, sh, sparc

● Virtualization: Bare Metal, Xen dom0, Xen domU

● Multipath: on, off

● udev: on, off? (Are there systems out there without any udev these
times?)

● Boot type: iSCSI, local, nfs

● LVM: on, off

● Using disk id: off, label, uuid

● EVMS: on, off

● MD: on, off

● dm-crypt: on, off

● lurks: on, off (root fs encryption)

● loop-aes: on, off

● Transport Interface: SCSI, SATA, USB, IEEE1394, CCISS, ida, network

● dmraid: on, off

● usplash / splashy: on, off

● ? cramfs initrd: on, off

● USB keyboard: on, off

● ? uswsusp: on, off

● ? swsusp: on, off

● ? swsusp2: on, off

10.1 Tested systems

Init4boot was tested on the following systems and everything works fine (as
expected):

Distribution Debian Version 4

Architecture amd64 Virtualization domU

multipath on Boot Type iSCSI

1 Exact number is 74317824, which is 2^15*14*3*3*6*3.

page 21/24

init4boot Requirements & Design

udev on lvm off

disk id off evms off

md off dm-crypt off

lurks off loop-aes off

interface network dmraid off

(u)splash(y) off USB keyboard off

ISCSI devices tested: Linux IET, EMC AX150i

Also tested: some additional disks (not root) with LVM

Distribution Debian Version 4

Architecture i386 Virtualization bare metal

multipath off Boot Type local

udev on lvm off

disk id off evms off

md off dm-crypt off

lurks off loop-aes off

interface SATA dmraid off

(u)splash(y) off USB keyboard off

Distribution Fedora Version 9

Architecture i386 Virtualization domU

multipath on Boot Type iSCSI

udev on lvm off

disk id off evms off

md off dm-crypt off

lurks off loop-aes off

interface network dmraid off

(u)splash(y) off USB keyboard off

ISCSI devices tested: Linux IET

page 22/24

init4boot Requirements & Design

11 Releases / Versions / History

11.1 Releases

11.1.1 0.0.1 [2008-03-31]

Release 0.0.1 is the initial release. This works on Xen Guest with iSCSI boot
and multipath.

11.1.2 0.0.2 [2008-04-04]

Beginning with release 0.0.2, init4boot supports booting from bare hardware.
Also the size of the initramfs was dramatically reduced: only the used libraries
(and not all) are now copied into the initramfs.

11.1.3 0.1 [2008-04-18]

This is a consolidation release. No new functionality was added. Man pages
were added and the documentation was finished.

11.1.4 0.2 [2008-05-03]

This is a consolidation release:

● Add additional package for iSCSI boot (which kills the original iscsid and
starts a new one)

● Build the package on debian stable (also?)

11.1.5 0.3 [2008-07-02]

Port to Fedora Core 9. The initial development was done on and for Deb

11.1.6 Short term aims

During the next releases, the following must be done:

● Backport to Debian :-) [The port to Fedora might have negative
implications to the Debian systems.]

● Check (and maybe fix): Xen dom0, nfs, lvm

● Add: encrypted tftp / sftp (similar to tftp)

11.1.7 Aims to get to stable state

The stable state of the project will be reached, if the first normally used system
has an uptime for at least one year and no problem occurred.

This can be earliest reached at 2009-05-04.

page 23/24

init4boot Requirements & Design

Additional there must be at least 100 users using this and 1.000.000 successful
boots without any problems.

11.1.8 Long term aims

One aim is to have at least the same functionality and stability as similar
packages (initramfs-tools, yaird).

Ports to SuSe and RedHat.

Official package in Debian, Redhat and SuSe.

12 Open Points / ToDo
● Must a fsck done before a mount of the root device? [It looks that Fedora

and Debian have different philosophies here: in Debian it is not needed –
the normal startup scripts will handle this. Under Fedora it might be that
the root partition must be checked before mounting.]

● Add to doc: No program is executed - because it is possible that the
system is different.

● Script can be executed by a normal user – no need to be root.

● Possible to use current system or some arbitrary other system.

● Add 'sftp' (which used keys and maybe a password provided with a
command line parameter) instead of the no-security-at-all tftp.

● Add status change of documentation to beta: aims?

13 Bibliography
RFC 2119: Bradner, S, Key words for use in RFCs to Indicate

Requirement Levels, 1997, http://www.ietf.org/rfc/rfc2119.txt
iSCSI Boot post: Florath, Andreas, iSCSI Boot, 2008,

http://lists.debian.org/debian-kernel/2008/02/msg00719.html
RedHat iSCSI Boot: RedHat, Installation-Related Notes, ,

http://www.redhat.com/docs/manuals/enterprise/RHEL-5-manual/release-
notes/RELEASE-NOTES-U1-s390x-en.html

Debian initramfs-tools: unknown, initramfs-tools, ,
http://packages.debian.org/source/sid/initramfs-tools

Debian yarid: unknown, yarid, , http://yaird.alioth.debian.org/

page 24/24

	1Note About Status
	2Features
	3Name
	4Alternatives
	5Introduction
	6Definitions
	6.1Wording
	6.2Boot type
	6.3Boot variant

	7Requirements
	7.1General
	7.2initramfs
	7.3init
	7.3.1Phases and Stages
	7.3.1.1Stages
	7.3.1.2Phases

	7.3.2Modular
	7.3.3Dependencies
	7.3.4Command Line Parameters
	7.3.5Boot types
	7.3.5.1Generic
	7.3.5.2local
	7.3.5.3nfs
	7.3.5.4iscsi

	7.3.6Boot variants
	7.3.6.1udev
	7.3.6.2multipath
	7.3.6.3LVM
	7.3.6.4network
	7.3.6.4.1DHCP
	7.3.6.4.2static

	7.3.6.5tftp

	8Design decisions
	8.1Python

	9Implementation Details
	9.1Shared Library handling

	10Testing
	10.1Tested systems

	11Releases / Versions / History
	11.1Releases
	11.1.10.0.1 [2008-03-31]
	11.1.20.0.2 [2008-04-04]
	11.1.30.1 [2008-04-18]
	11.1.40.2 [2008-05-03]
	11.1.50.3 [2008-07-02]
	11.1.6Short term aims
	11.1.7Aims to get to stable state
	11.1.8Long term aims

	12Open Points / ToDo
	13Bibliography

